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Reflection Coefficient of a Waveguide with
Slightly Uneven Walk

DAVID A. HILL, FELLOW, IEEE

Abstract —First-order results are derived for the reflection coefficient of

a waveguide with slightly uneven walls. Specific assalyticaJ and numerical

results are given for rectangular waveguides and coaxial transmission lines.

Simple upper bounds are given for reflection coefficients in terms of the

maximum deviation of the waveguide. For typicaf tolerances the reflection

coefficients are very small ( <10 – 3), but the results are important in

precise six-port measurements.

I. INTRODUCTION

N ONUNIFORM waveguides have been studied for

some time with application to antennas [1] and ta-

pers [2]. The generalized telegrapher’s equations [3], [4]

provide a useful starting point, and Solymar [2] has worked

with coupled traveling waves for studying spurious mode

generation.

In this paper we use Solymar’s formulation to derive

first-order results for waveguides with small nonuniformity

or wall roughness. Section II treats the reflection and

transmission of the dominant mode and the generation of

higher order modes for a waveguide of arbitrary cross

section. Section 111 contains specific results for the reflec-

tion coefficient of the TEIO mode in a rectangular wave-

guide. Section IV contains similar results for the reflection

coefficient of the TEM mode in a coaxial line. For typical

tolerances the reflection coefficients are very small, but the

results are important in precise six-port measurements [5].

II. FIRST-ORDER SOLUTION

we consider a perfectly conducting waveguide with a

nonuniform section of length L as shown in Fig. 1. Start-

ing with the generalized telegrapher’s equations of Reiter

[4], Solymar has derived the following differential equa-

tions for coupled traveling waves [2]:

dA ~ 1 d(ln K,)
—= —

dz
.ifi;AT – ~ dz A,:

-)+~ ($;A; + S,;Ap

P

and
dAZ- 1 d(ln K,)A+
— = j#iA,- ––~ ~z z

dz
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Fig. 1. Waveguide with a nonumform section.

A,+ and A,- are amplitudes of the forward and backward

traveling waves, subscript i refers to the ith mode, j3~ is

the wavenumber of the i th mode, Ki is the wave impedance

of the i th mode, S,; and S,; are forward and backward

coupling coefficients, and the p summations are over all

waveguide modes. The time dependence is exp ( jot). In (1)

it is assumed that K, # O and K, # m, and this means that

/?, + O. Thus (1) is not valid for modes at the cutoff

frequency (~, = O). However, (1) remains valid for modes

below cutoff where @Zand Ki are pure imaginary.

If the waveguide is fed by a single mode m, the bound-

ary conditions at the ends of the nonuniform section are

[2]

A;(0) =AO, A;(L)=O

and

A:(0)=O, A,-(L)=O, fori#m. (2)

Because we are interested in the effect of small waveguide

roughness or imperfections, we assume that the waveguide

cross section is nearly constant. Consequently we are able

to use a perturbation solution. This is in contrast to the

work of Solymar where intentional waveguide tapers were

considered. The zero-order perturbation solution to (1)

and (2) is the solution to the uniform guide, and only the

forward-traveling m th mode is nonzero:

A;(”)(z) = ~oe-’pf’z

A,;(”)(z) = O

and

i4;f0~(z) =ff-(o)(z) =(), fori#m. (3)

The superscript (0) refers to zero-order quantities (uniform

guide).
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A first-order analysis of (1) and (2) shows that the Y

first-order amplitudes satisfy the foIlowing differential

equations: T

E+

2

b

d##
3

x

1

1

—=–j~#)A;(l)- “~ ( ~jl) _ ~jo) ) A:(o) 4

dz l—-—----a---+
&f#)

[ 1

1 d(ln~rn) A+(o) Fig. 2. Rectangular wavegoide. The width a and height b are functions
— . jfl~O)A~ (1)+ S~~ – ~

dz dz ‘“
of z.

d~:(l)

— = – j~}O)A:@J + SZ;A; ‘0),
dz

i#7n,

dA,-(l)
— .

dz
j/ljO)A,-(*) + Si;A;(0), i+m. (4)

Here the superscript (1) refers to first-order quantities. The

solutions to the differential equations in (4) are

J[ 1 d(ln K~)
A;(l)(z) = –A. Lszm–5

dzf 1

~–j~$)(zz’ ‘-z) dz~

z

A;(l)(z) = Aojz~;~-j[fl#)z’+6:0)(z-z’)]dz’ > i#m
o

/f-(l)(z) = – Ao~LS~e-~[fl$)z’+ 8$0)(z’-z)l dz,, i#m.
z

(5)

We are actually most interested in the wave amplitudes at

the ends of the nonuniform section; these are given by

A;(l)(0) = - Ao~’[S;~ - ; ‘(l;:) ]e-~’~f)zdz

,( /
~z-(l) ()) = – A. ‘s;e-j(~!i?+~$o))z dz, i+m. (6)

o

The results in (6) are slightly different from those of

Solymar, but they are equivalent to first order.

In our application only the mth mode is propagating,

and all other modes are below cutoff, Thus & is negative

imaginary for i # m, and A: ‘1) and AL- ‘1) are negligible

because of the exponential decay in the integrands (see

Appendix A). The reflection coefficient Sll and the trans-

mission coefficient S21 of the propagating mode m are

A;(l)(0) J[ 1

1 d(h ~~) ~-j2B$), d~

Sll= A =– ‘S;. –y ~z
o 0

and

III. MFLECTION COEFFICIENT FOR A

WCTANGULAR WAVEGUIDE

A. Integral Form

In this section we derive the reflection coefficient for the

dominant TEIO mode in a rectangular waveguide. The

geometry for a rectangular waveguide of width a and

height b is shown in Fig. 2. In our model a and b are

allowed to vary with z, but the guide cross section is

always rectangular. Using the notation of Solymar, we
write the scalar mode function + [101as

1 ‘2a 1/2

()4’[10]= ; ~ sin (77x/a ) (8)

where [ ] on the subscript indicates a TE mode. The

electric-field mode function e[lol is [2]

2

()

1/2

e[101=2XV~+=j ~ cos ( 77x/a ) (9)

where superscript “ indicates a unit vector and Vz is the

transverse gradient operator, The wavenumber B[lO1 is

%0, = [~2-(@z)’]1’2 (lo)

where k = 27r/ A and A is the wavelength in the medium

filling the guide. The wave impedance K[lol is

k(p/c)l’2
K –—

’10]– /+lo]—

(11)

where p and c are the permeability and permittivity of the

medium inside the guide.

The expression for the backward coupling coefficient

S[io][ lo] = –
:$cwtan’(w2ds ’12)

where the integration is over the waveguide perimeter

C(z), ds is an element of C(z), and tan@ is the slope of

the waveguide wall in the z directicm. The sidewalls (1 and

3) do not contribute to the integrad in (12) because the s

derivative is zero. If we substitute (8) into (12) and per-

form some algebra, we can simply ,S1iol[lO1to

– 1 db
Sfiol[lol = — -–

2b dZ “

(13)

To evaluate (7), we also require the following derivative:

A;(1)(L)
[ /( ) z].(7) dz =-a-l[l-(~~l-l(&~~ (14)

d(ln K[lo] )
S21= A = e-’pS)L 1– j OL @/_ ~:o) d

o
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Equation (13) is consistent with Solymar’s rectangular

waveguide example, but he did not require (14) because he

did not consider any variation in a.

In keeping with our first-order analysis, we write the

guide width and height in the following form:

a(z) =aO+ A.(z)

and

b(z) =bO+A~(z) (15)

where A./a. <<1, Afi/bO <<1, and a. and b. are indepen-

dent of z. In addition we require that A.(O)= A~(0) =

A.(L) = A~(L) = O so that the waveg,uide surface is cort-

tinuous. Using (13)–(15) in (7), we obtain the following

first-order expression for Sll:

where

Cb=;
o

and

flflll= [k2-(~/ao)2]’2

The expression in (16) provides a formal solution for

Sll, but its form is inconvenient because it requires the

derivatives of A. and A&, Using integration by parts, we

can rewrite (16) in the following form:

Sll = Slla + Sllb (17)

where

s Ila ‘j2Pt;JlCa~LAa( z)e-J20t:ilzdz

and

L

h.b = j2fi$&~b Jo ()
A b z ~-J2~{:;)z dz

This form is more convenient than (16) because it involves

the width and height deviations, rather than their deriva-

tives. We have broken Sll into two parts to illustrate the

separate dependencies on A. and A ~.

The form of (17) is similm to that in sea scatter [6]

where the backscattered signal has the Bragg diffrac-
tion form. The integration in (17) essentially picks out

the Fourier components of the surface variations with

wavermmber 2~{~&. If we are given the width and height
variations, A.( z) and Ab( z), we can calculate Sll numeri-

cally from (17).

B, Upper Bound

Frequently the actual z profiles of A ~ and A~ are not

known, but an estimate of the upper bound is available.

Let us assume that

lda(z)l <Amax

Ijx 1 @

4xlo-
.
c
:

m

g

9

2xlo-

0

‘-%
“-.%. - Isllal

“ %.,, - <::...==%
. .=$

–-_--~..--..-.J--.-..&__+_
Frequency (Gl+z)

Fig. 3. Upper bound of the reflection coefficient magnitude ISII 1. Pa-
rameters: UO= 2.29 cm, b,] = 1.02 cm, L = 7.62 cm, and AmaX = 2.54 pm.

and

lAb(z)]<AI~ZK
(18)

where A ~= is a known dimensional tolerance. Then from

(17), ISIII satisfies

1%,1< M$?1L(K4+ 1~/J)A,,,,x. (u?)

Thus the upper bound on Ifi’lll is directly proportional to

A ~= and L. For realistic profiles of A. and A ~, the actual

value of ISIII will normally be much smaller than the

upper bound in (19) because of the oscillatory nature of

the exponential factor i.n (17).

To illustrate the ordw of magni.twk of the quantities in

(19), we consider a six-port application at X band. Typical

parameters are [7]: aO ==2.29 cm (0.9 in), b.= 1.02 cm (0.4

in), L. = 7.62 cm (3 in), ll,~~X = 2.54 pm (10-4 in), and

frequency = 8.2-12.4 GHz. The upper bound on Ifi’lll is

shown in Fig. 3 as a function of frequency. Also shown are

the separate contributions caused by variations in a and

b:

IL$J ~ 2@&WcJA1w

and

(0) f ‘ (20)l,s,l,,l < z/.l[I.ol --,l~,blAmax.

The lS1l,, \ term can be viewed as an impedance effect and

could be predicted by classical nonuniform transmission

theory [8]. However, the Ifill bl term is caused by backward

coupling into the same mode and is not predicted by a

classical transmission line analysis. In general, the two

terms are of the same order of magnitude. Their frequency

dependence is different became \C~I is frequency depen-

dent and lC~\ is not. In contrast the forward coupling

coefficient is zero [2], and changes in b do not affect the

transmission coefficient (see Appendix B).

The treatment here has assumed that the nonuniform

section of waveguide is continumn at the ends, A.(O) =
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A~(0) = A.(L) = A~(L). If there is a discontinuity at ei-

ther end (as with a junction), then that effect must be

addressed separately [9].

C. Sinusoidal Profile

In this section we consider an idealized sinusoidal pro-

file for both A. and A~. This is a convenient profile to

consider because it is zero at both ends (z= a and z = L)

and the integrations in (17) can be performed analytically.

The specific forms for A. and A ~ are

Aa(z)=Aa~msin(n~z/L)

and

A~(z) = A~~=sin(nrz/L) (21)

where A. mm and Ab.= are maximum deviations and n is
a positive integer equal to the number of half cycles in the

interval of length L.

To evaluate Sll using (17), we need to evaluate the % d

following integral:

In= JLsti(n7z/L)e-2flf?Zdz (22)
o

If we replace the sine factor by complex exponential and

perform some algebra, we can write 1. as

The first term in (23) has a peak at ~&)lL = rim/2, which is

the condition for Bragg scatter.

Using (17) and (23), we can write Slla and s~~b as

% = j2fl/lljCaAamW1n
Fig. 5.

and

Frequency (GHz)

Magnitude of ,SIla for a sinusoidal profile. Parameters: a.= 2.29
cm, b. =1.02 cm, L.= 7.62 cm, and A.m= = 2.54 pm.

Frequency (GHz)

Magnitude of ,SIlb for a sinusoidal profile. Parameters: a.= 2.29

cm, b. = 1.02 cm, L = 7.62 cm, and Abmm = 2.54 pm.

Numerical results for the magnitudes of Slla and Sllb are

shown in Figs. 4 and 5 for A= mu = A~~~ = 2.54 pm. The

curves for n = 8 have a peak in the center of the frequency

band where the Bragg condition is satisfied. For n = 2 and

n = 20, the Bragg condition is not satisfied, and the magni-

tudes are much lower. The results in Figs. 4 and 5 indicate

that a special profile is required for the magnitudes to even

approach the upper bounds, and generally the magnitudes

are much lower.

IV. I&FLECTION COEFFICIENT FOR A COAXIAL LINE

A. Integral Form

In this section we derive the reflection coefficient for the

dominant TEM mode in a coaxial line. The geometry for a

coaxial line with inner radius P, and outer radius P. is

shown in Fig. 6. In our model p, and PO are allowed to

vary with z, but the guide cross section is always coaxial.

The electric-field mode function (eOfor the TEM mode is

@

‘0= [Zm ln(po/p,)]l/2p (25)

where the subscript O indicates the TEM mode. The propa-

gation constant /30 of the TEM mode is the wavenumber of

the medium:

f!o=, k = 2T/A. (26)

The wave impedance KO of the TEM mode is the intrinsic

impedance of the medium:

Ko= ‘q = (p/E)l’2. (27)

Since K. does not depend on p, and PO, the derivative
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Fig. 6. Coaxkif line. The imer and outer radii, pi and pO, are functions

of z.

term in (7) is zero. Thus the reflection coefficient Sll of

the TEM mode obtained from (7) is

JS1l =– ‘s~e-izk’dz.

o
(28)

The backward coupling coefficient S~ of the TEM

mode is most directly determined from the general formula

of Reiter [4] which is an integral over the cross section of

the guide. For the coaxial line this integral takes the

following form:

(29)

If we substitute (25) into (29) and carry out the integra-

tions, we obtain

[

_l 1 dpi 1 dpO
S&= [21n(P0/Pi)] —— 1 (30)

~ dz pO dz “

The result in (30) is equivalent to that of classical theory

for nonuniform transmission lines [7] if we take into ac-

count the difference in the definition of voltage and cur-

rent. In keeping with our first-order analysis, we write the

‘“’x’o-’~
1,0.10–’ —

0.8x10–2 —
n
.

:
m

; 0.6x10–2 —

2
3

0.4.10-2 —

0.2 X10–2 —

o
0 4 8 12 16 20

Frequency (G Hz)

Fig. 7. Upper bound of the reflection coefficient l,!i’ll 1for a coaxial
Parameters: p, = 1.52 mm, p.= 3.5 mm, L = 3 cm, Aims= 0.635

and AOmm =1.27 pm.

line.

pm,

gration by parts, we can rewrite (32) in the following form:

where

JSlli =j2kCi ‘Ai(z) e-J2k’ dz
o

and

s110=j2kco~LAo(z)e-’2kzdz
We have again broken Sll into two parts to illustrate the

separate dependencies on Ai and A ~.

B. Upper Bound

As with th~ rectangular waveguide, we can obtain an

upper bound on ISill if we have upper bounds on A i and

AO. Let us assume that

inner and outer radii as

pi(z) =plo+ Ai(z) and

and

P.(z) =Poo+ L(z) (31) where Ai~= and

where A i /’pio <<1, A JP.o << L and pio and Poo are inde- Then, from (33),

~ pendent of z. Using (30) and (31) in (28), we obtain the
following first-order solution for S’ll:

(

dAi dAO

)

where

— e-J2kz dz (32)S1l= ~L Ciz + CO dz

and
where

Ci = – [2(Jioln(fJoo/pi~)]‘1

lAi(z)l~ Aimax

lAo(z)lsAonmx (34)

A . ~u are known dimensional tolerances.

IS1lI satisfies

1!111 ~ 1$1,1+ I%lol [35)

For realistic profiles of A, and Ao, the actual value of lS1, I
and

. .
will normally be much s-mailer {ban the upper bound in

c.= [2POoln(POo/Pie)] ‘l.
(35) because of the oscillatory nature of the exponential

factor in (33).

As with the rectangular guide, we prefer not to deal with To illustrate the order of magnitude of the quantities in
the derivatives of the dimensional variations. Using inte- (35), we consider a six-port application. Typical parame-
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(7 mm air line).
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Fig. 9. Profile of the outer radius of a coaxial line and magnitude of the reflection coefficient for a frequency

(7 mm air line).

G-
0

c
0

of 12 GHz

tersare [7]: pi=l.52ti, pO=3.5 mm, L=3cm, Ai~m=

0.635pm, AO~n =1.27 pm, and frequency <18 GHz. The

upper bounds on Isllzl, &Ol, and Islll are shown in Fig. 7.
All three quantities are directly proportional to frequency

because of the k factor in (35). The results for a realistic

profile would normally have a more complicated frequency

dependence because of the exp ( – j2kz) factor in the

integrals in (33).

C. Actual Profile

The outer diameter of a precision air line was measured
with art air gauge. The parameters are the same as in the

previous case except that the line is longer (L= 16 cm).

We assume that the inner conductor has no variation

(Al = O). In Figs. 8-10, we show the magnitude of the

reflection coefficient ISIII as a function of the length of the

line for three different frequencies, of interest. The actual
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Fig. 10. Profile of the outer radius of a coaxial line and magnitude of the reflection coefficient for a frequency of 18 GHz
(7mmairline),

profile AO(Z) of the line is shown in each case. (The profile

is indicated by solid circles and the reflection coefficient

by open circles.) There is a small increase in ISlll with

frequency, but it is much less than the linear increase in

the upper bound as shown in Fig. 7. Its also interesting

that ISlll does not increase as rapidly with line length as

indicated by the upper bound expression in (35). The

actual ]S’lll stays well below the upper bound expression in

(35) for all lengths and frequencies.

APPENDIX A

HIGHER ORDER MODES

When only the m th mode. is propagating and all higher

order modes are below cutoff, the propagation constant

~jo) becomes pure imaginary: ‘

pjo) = – jr}o), i+m, (Al)

where I’}o) is the attenuation constant and is pure real. If

we substitute (Al) into (6), we get the following expression

for the amplitudes of the reflected higher order modes:

A17(’)(0) = AO~~~;e-(~pg)+r:0))2 dz, i + m. (A2)

From (A2) we can develop the following upper bound:

IA;(l)(0) I< lAol lS~l[l- e-wL]/r:o/ (A3)

The coupling coefficient S,; actually depends on z, and by

lS,jl in (A3) we mean the maximum value. For modes well
below cutoff, I’JO)L is normally large, and (A3) reduces to

\A:qo) 1<]Aolp;l/ry. (A4)

Thus IA,-(l)(0) I is inversely proportional to r~”) and is not

proportional to L. This results from the exponential decay

which allows only a small portion of the guide (approxi-

mately equal to 1/ lTjOJ) to contribute to the integral.

Consequently the amplitudes of the reflected higher order

modes are much smaller than that of the reflected domi-

nant mode which is proportional to L as shown by (19).

For a more precise comparison, we would need to evaluate

the coupling coefficient Sij, but it is of the same order as

s~m.
To examine the transmitted higher order modes, we

substitute (Al) into (6) and obtain the following expres-

sion:

~;(l)(L) =~o
/

Lsz~e-[JW).+ IT’(L-Z)I dz . (A5)
o

From (A5) we can obtain the following upper bound:

IA:(l)(L) 1< l~olls:l/rjo). (A6)

Thus the upper bound for the transmitted higher order

modes has the same form as (A4) except that the forward

coupling coefficient Si~ appears in place of the backward

coupling coefficient. Both coupling coefficients are small

first-order quantities proportional to the guide nonuni-
formity [2].

APPENDIX B

TRANSMISSION COEFFICIENT S21

From (7) the transmission coefficient for the dominant

TEIO mode of a rectangular waveguide is

The zero-order propagation constant P[~& is given by (10),

and the first-order propagation constant can be obtained
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from a Taylor expansion:

where

@[lo] (7r/ao)2

db .=.O = ao[k2-(w/’aO)2]1/2 “

If we substitute (B2) into (B3), we obtain

Szl = e--@’~l~(l – j821) (B3/

where

~ = (A,X(~/ao)’

2’ ao[k’-(v/aO)2]1/2

and

(Aa) = +~LAa(z) dz.

Thus 821 is proportional to the average value of A. and is

normally much less than one. Also, 821 is independent of

A~.

For the usual case of li$211<<1, we can write S21 in the

following exponential form:

S’l = ~-xflfi]~+bl) (B4)

Thus to first order the magnitude of S21 is one, and S21

undergoes an additional phase shift of – 821.

For the coaxial line, the propagation constant PO of the

TEM mode is equal to k and is independent of z. Conse-

quently, the transmission coefficient S21 is the same as that

of the uniform line to first order:

S21= ~-lkL. (B5)

APPBN~IX C

IMP~RF~CTLY CONDUCTING WALLS

For imperfect wall conductivity, the analysis is in gen-

eral much more complicated, and even the modes for the

uniform waveguide are difficult to analyze [10]. The analy-

sis for the coupling coefficients for nonuniform wave-

guides is very complicated, but the simpler two-dimen-

sional case ‘of a parallel-plate waveguide has been analyzed

using the surface-impedance boundary condition [11].

For metal waveguides of high conductivity, the surface

impedance is very small, and the mode fields do not differ

much from those of the perfectly conducting waveguide,

Consequently the coupling coefficients for nonuniform

waveguides which depend on the mode fields do not differ

much from those of perfectly conducting waveguidcs. The

main effect of imperfect conductivity is to cause attenua-

tion and a small change in the phase constant [9]. For the

rectangular waveguide, the complex propagation constant,

y = a + j~, of the T1310 mode is approximately [10, p. 193]

(cl)
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where TO is the free-space impeda rice, k. is the free-space

wavenumber, and ZW, is the surface impedance of the

waveguide walls. For high wall conductivity y, the surface

impedance is

ZW = ( jtipW/uW)l’2 (C2)

where p. is the wall permeability and OW is the wall

conductivity.

To account approximately for the effects of finite wall

conductivity, we can replace j~~~~l in Section III by y as

given by (Cl). In most cases this effect will be negligible.
For example [9],, a copper waveguide at X band has an

attenuation rate a of approximate ely 10 – 2 Np/m and a

relative change in the real part of ~1~~~1of less than 10-3. If

we make the y substitution for j~[~~l in (23) and (24), the

relative changes in ISlla I and lSll~l in Figs. 4 and 5 are less

than 10-3.

The correction for finite wall conductivity can be made

in a similar manner for the coaxia”l line. Here the complex

propagation constant, y = a + j~, of the TEM mode is

approximately [12]

Zw(pz:l+po-q
Y = Jk13+ 2qoln(P0/Pl) (C3)

where ZW is again given by (C2). To account approxi-

mately for the effects of finite wall conductivity, we can

replace jk in Section IV by y as given by (C3). In most

short line applications, the effect will be negligible.
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